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Abstract—A new high-order-mode analytical method is de-
scribed for calculating the frequency-dependent complex permit-
tivity of a low-loss dielectric in a parallel-plate structure using
a planar microwave circuit model. An analytical expression for
the complex permittivity is derived in terms of the terminal
impedance at a modal resonant frequency of the structure. The
derivation provides physical and mathematical insight into the
relation between complex permittivity and port impedance. The
technique is validated by good agreement between manufac-
turer’s specifications and complex permittivity calculated from
measurements near resonant frequencies for a printed circuit
board (PCB).

Index Terms—Dielectric losses, dielectric measurements, high-
speed circuits/devices, microwave circuits, microwave measure-
ments, microwave resonators, multichip modules, printed circuits.

I. INTRODUCTION

T HE complex permittivity of a dielectric material used
in high-speed and microwave circuits determines impor-

tant characteristics such as impedance, phase velocity, and
attenuation in signal transmission structures. The electrical
performance of a printed circuit board (PCB) or multichip
module (MCM) can be significantly influenced by the di-
electric properties of the substrate material. For example, the
reduction in power and ground plane noise in a PCB or
MCM is strongly affected by the complex permittivity of
the dielectric material [1]. Thus, it is important to accurately
determine the complex permittivity for correct modeling and
simulation of these systems.

Extensive research has been performed on determination of
material complex permittivity during the last three decades
(e.g., the cavity resonance method, conductor method, and
waveguide-aperture method [2]–[11]). These methods are of-
ten complicated, especially when accurate results are required.
A simple and practical method for calculating the dielectric
constant and loss tangent of thin dielectric films embedded
in a parallel-plate capacitor was developed based on the
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measured admittance of a capacitor [12], [13]. At microwave
frequencies, the admittance at the terminals of a parallel-plate
structure such as a two-metal-layer PCB or MCM can be
calculated from the scattering parameter , measured using
a network analyzer. With this approach, the loss tangent
is simply calculated as the ratio of the real part to imaginary
part of the port admittance of the structure, while the dielectric
constant is determined from the imaginary part of the port
admittance and the geometrical dimensions of the structure.
For measurement frequencies where the stored electric en-
ergy dominates the stored magnetic energy—far below the
capacitor’s first resonant frequency—this method provides a
good estimate of dielectric constant and loss tangent, since
the dielectric loss tangent of a material is proportional to the
ratio of the density of energy dissipated in the material to the
stored electric-energy density [14].

At low frequencies, the contributions to the energy dis-
sipation and energy storage from the resistive and reactive
elements are decoupled [15]. In contrast, at high frequen-
cies where the plate size is no longer small compared to
the wavelength of the signals, the stored electromagnetic
energy contributes partially to the resistance, and the power
dissipation contributes partially to the reactance. At high
frequencies, the total reactance of the parallel-plate capacitor
depends on the multiple modes of the full-wave equivalent
circuit of the structure, and as the frequency increases, it
alternately becomes inductive, then capacitive, and so on
[1]. This behavior is controlled by the separation and size
of the plates, the location and size of the terminals (ports)
on the plates, and the properties of the dielectric [16]. At
resonant frequencies, the imaginary part of the port impedance
is zero, and thus the ratio of the real part to imaginary
part of the port impedance becomes infinite. The previously
described complex permittivity calculation technique based
on port admittance would yield zero dielectric constant and
infinite loss tangent, and thus should not be used near the
resonant frequencies.

This paper focuses on a new high-order-mode method for
evaluating the complex permittivity of a film dielectric in a
parallel-plate structure. This technique has wide applicability
in material electrical property measurements, since thin film
samples can be produced from many materials. We will derive
equations for the complex permittivity of a parallel-plate
structure in terms of the modal impedance. These equations
will then be shown to collapse into the above-mentioned
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approximations for complex permittivity at low frequencies.
The low-frequency approximations will be shown to be in error
at high frequencies for a PCB example. In contrast, the high-
order-mode complex permittivity calculation technique will be
shown to give good results near the modal resonant frequencies
for this structure. The effect of loss in the conducting planes
will also be studied.

II. DERIVATION AND DISCUSSION OFHIGH-ORDER-MODE

EQUATIONS FOR COMPLEX PERMITTIVITY

Based on the model for port impedance for a planar mi-
crowave circuit [17] and for the two-metal-layer power-ground
plane structure [16], we have developed closed-form equations
to calculate the complex permittivity at the modal resonant
frequencies. First, we assume that the two metal planes are
perfectly conducting. According to [16, eq. (4)], the th
modal impedance of the structure can be written as

(1)

where is the wavenum-
ber with being angular frequency, , and

, with representing the th eigenmode in
the -direction and representing the th eigenmode in the
-direction, and and are the widths of the perfectly

conducting plates in the - and -directions, respectively
(see Fig. 1). To compensate for the field fringing along the
periphery of the structure, the physical widths of the planes in
the - and -directions are converted into equivalent electrical
widths by [17, eq. (2.75)] and these are used instead for
the widths and in (1). The dielectric has complex
permittivity and permeability . Coefficient is

(2)

where and are the port widths in the- and -directions,
respectively, and represent the location of the center
of the port in the - and -directions, respectively, and is
the dielectric thickness between the parallel plates. Coefficient

if , and otherwise. Similarly,
if , and otherwise. Equation (1) is valid

for signal wavelengths much larger than. Equation (1) is
represented by a parallel conductance–inductance–capacitance
circuit, except for the , mode, for which it is
represented by a parallel conductance–capacitance circuit [16].
The total port impedance of the parallel-plate capacitor is the
double summation over and of all modal impedances

, and is represented by a series connection of all the modal

Fig. 1. Parallel-plate capacitor structure [17].

parallel circuits. Each parallel circuit has a modal resonant
frequency at which its reactance is zero. Likewise, the series
combination of the parallel circuits has a system resonant
frequency at which the total reactance is zero.

Letting and allows
the real and imaginary parts of the th modal impedance

to be written, respectively, as

(3)

(4)

Dividing (3) by (4) yields

(5)

and adding (3) and (4) gives

(6)

Thus, and can be expressed as

(7)

(8)

Since , then

(9)

and also

(10)

Since and are even and odd functions of frequency,
respectively, [18], [19], and is positive except at zero
frequency, it follows that and are also even and odd
functions of frequency, respectively.

Solving (9) and (10) for the real and imaginary parts of
, and substituting (7) and (8), the explicit formulas relating
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and to and are

(11)

(12)

(13)

Equations (12) and (13) are valid provided that the metal plates
have infinite conductivity.

For the static , case, only the first mode
contributes to the impedance, so , and the factor

is zero. Thus, (13) reduces to ,
equivalent to [12, eq. (1)], and (11) reduces to

(14)

For , (14) becomes equivalent to [12, eq. (2)].
At the th modal resonant frequency, and

is maximum, so (11) yields

(15)

and (12) gives

(16)

Thus, now becomes a simple function of mode numbers
and angular resonant frequency, andis related to the real
part of the modal impedance.

III. SIMULATION OF A PCB USING HIGH-ORDER-MODE

COMPLEX PERMITTIVITY EQUATIONS

To utilize only one modal impedance in the determination
of the complex permittivity, it must dominate the system
impedance . Because of the near singular property
of the real and imaginary parts of at the modal resonant
frequency, does dominate . We will utilize the single-
mode dominance by considering frequencies at the modal
resonances while employing (11) and (13) to calculate the
complex permittivity.

As stated in Section I, when the operating frequency is
far below the first system resonant frequency of the parallel-
plate structure, the capacitive behavior dominates the total
reactance, and the resistive and reactive effects are decoupled.
Under this condition, the loss tangent can be approximated
by . As the frequency increases, the ra-
tio of stored magnetic energy to stored electric energy in-
creases, causing the accuracy of the estimated loss tangent
and dielectric constant to worsen. For example, consider the

TABLE I
DIELECTRIC CONSTANT AND LOSS TANGENT AND THEIR ERRORS

CALCULATED FROM THE IMPEDANCE USING A SIMPLE STATIC

APPROXIMATION AT FREQUENCIESBELOW THE FIRST SYSTEM RESONANCE

16.51 16.51 cm double-sided PCB with copper power and
ground planes, as shown in Fig. 1 and discussed in [16].
The copper planes are 17.78-m thick and are separated by
a dielectric layer 1.524-mm thick with relative permittivity

, where is the permittivity of free space, and loss
tangent of 0.01 up to the gigahertz frequency range. Since the
terminals (ports) of size 0.333 0.333 mm are geometrically
centered on the planes, the fundamental modal resonance at
440 MHz is suppressed and the first observable resonance
occurs at 883 MHz and the second one at 1.25 GHz. The
impedance is calculated from (1) by double-summing over

and all contributions of modes ,
, where . Table I

summarizes the dielectric constant and loss tangent calculated
from the approximate formulas discussed in Section I. As
the frequency increases, the percentage errors between the
calculated and actual dielectric constant and loss tangent
significantly increase, and thus the high-order-mode technique
should be used instead at high frequencies.

In calculating complex permittivity using the high-order-
mode technique, we will utilize the dominance of a modal
impedance on the total port impedance at the modal reso-
nant frequency. To demonstrate the dominance of a modal
impedance near its resonant frequency on the total impedance
of the structure, the , and ,
modes, which are at the same frequency, and the double-
summation of the first modal
impedances are plotted over the frequency range between 100
MHz and 1.5 GHz in Fig. 2. The curve for the summed
200 200 modal reactance is always above that of the
single modal reactance at frequencies below the first modal
resonance, which is at 0.883 GHz in this case. For frequencies
approaching this resonance, the discrepancy between the two
curves decreases and nearly vanishes at frequencies close
to the resonance. The discrepancy is much more frequency-
sensitive for the reactance than for the resistance. Near the
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(a)

(b)

Fig. 2. Comparison of single mode and total impedances based on the
two-dimensional microwave planar circuit model. (a) Resistance. (b) Reac-
tance.

TABLE II
DIELECTRIC CONSTANT AND LOSS TANGENT CALCULATED FROM

IMPEDANCE NEAR MODAL RESONANT FREQUENCIES OF THEPCB

first modal resonance, the resistances of the first mode and of
the 200 200 modes are indistinguishable in Fig. 2, while
the difference between the reactance for the two cases varies
considerably with frequency. At the next resonance of 1.25
GHz, the impedance contribution of the first mode is clearly
small compared to the 200 200 modal impedance. Thus,

is a good approximation if the operating frequency
is selected close to the resonant frequency of mode, .

As an example of applying (11) and (13) to calculation of
the dielectric constant and loss tangent from the impedance
near modal resonances of a parallel-plate structure, we select

TABLE III
DIELECTRIC CONSTANT, LOSS TANGENT, AND THEIR RELATIVE ERRORS

CALCULATED FROM IMPEDANCE AT THREE DIFFERENT FREQUENCIESNEAR

THE THEORETICAL (2, 2) MODAL RESONANCE (1.2493 GHz)OF THE PCB

the input port at the center of the power-ground plane structure.
Thus, all modes with at least one index—or —being
an odd number are suppressed due to the cosine factors
involved in the coefficient , and the peaks of the evenly
numbered model impedances will be clearly distinguished
in the frequency domain. For the square board, the first
nonzero modes (0, 2) and (2, 0) have an identical modal
impedance, thus the input impedance calculated as a sum
of the two dominate modal impedances at the first degenerate
resonance can be divided by two to obtain a single modal
input impedance for either mode. Following the procedure,
first we calculate the theoretical resonant frequency of mode
(0, 2) and then calculate the total impedanceat three
different frequencies near this resonance with and

for the previously described planar structure.
The three ’s represent the port impedance of the structure
as if measurements had been performed. We then substitute
the measured impedancesinto (11) and (13) and calculate
the corresponding complex permittivities. To validate this
approach, first it is recognized that (1) for the impedance
of the structure has already been verified by experimental
measurements [16]. Second, since this approach is based on
measuring the impedance near a modal resonant frequency, the
accuracy of the method must be investigated as a function of
the closeness of the measured frequency to the actual modal
resonant frequency. In practice, the measurement frequency
could differ from the exact resonance due to coarse frequency
resolution of the measurement equipment, to an imperfect
structure geometry, or to an imprecisely matched coupling
between the detector and the generator. To illustrate these
points, we summarize the complex permittivityand
calculation results at three frequencies slightly different from
the theoretical resonances of the (0, 2) and (2, 2) modes in
Tables II and III, respectively, and perform a simple error
analysis. The data in these tables show that the error in both

and significantly increases when the offset from the
modal resonance becomes large; the error in is more
sensitive than that in especially for a large frequency offset.
The error is mainly due to the contribution to the terminal
impedance from other nonresonant modes at the selected
frequencies.
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TABLE IV
DIELECTRIC CONSTANT, LOSS TANGENT, AND THEIR RELATIVE

ERRORSCALCULATED FROM MEASUREDIMPEDANCE NEAR THE

FIRST TWO OBSERVABLE MODAL RESONANCES OF THEPCB

To further verify the model, and to provide an example
of the proposed approach, the-parameter data for the PCB
was measured with a Hewlett-Packard HP-8510C network
analyzer. The analyzer frequency was swept across a range
of frequencies and the measured was converted into
impedance. The modal resonant frequencies were estimated
as the frequencies at which the resistance peaked and the re-
actance magnitude was minimum. At the two observed modal
resonances, (11) and (13) were used to calculate dielectric
constant and loss tangent. Table IV summarizes the complex
permittivity calculation results for the two resonant frequencies
studied in Tables II and III. These measured relative dielectric
constant and loss tangent values in Table IV are near the
reported values and the model-predicted values. The error is
mainly due to the offset of the measurement frequency from
the actual resonant frequency especially for the (0, 2)/(2, 0)
modes or due to the contribution to the terminal impedance
from other nonresonant modes at the selected frequencies.

IV. A NALYSIS OF ERROR DUE TO

FINITELY CONDUCTING PLANES

In the previous discussion, we assumed that the copper
planes are perfectly conducting. However, in practice, mea-
surements of loss factors of this structure include losses
predominantly due to dielectric and plane conductor resistivity
losses [20]. In this case, a perturbation approach can be used
to separate the conductor loss from the total measured loss
of the structure. Assuming that the electromagnetic fields in
the lossy dielectric are not greatly different from the fields
of the lossless case, the power loss in the conducting planes
and the of the structure accounting for the lossy conducting
planes can be calculated by a standard technique [21], i.e.,
the ratio of the of the dielectric to the total loss can be
calculated or the can be separated from the total loss. As
a first-order approximation, we propose an analytical scheme
to evaluate the effect of conductor loss on the calculated total

. When considering a small dissipation in the structure,
the wavenumber should be formally replaced by

(17)

with

(18)

where is the skin depth of the conductor. This expression
for is derived in [17] and illustrates the contribution of the
conductor and dielectric losses to the imaginary part of the
wavenumber.

To estimate the contribution of conductor and dielectric
losses to the total measured , we define the total mea-
sured as the apparent , which includes both
conductor and dielectric loss contributions, and express plate-
conductivity , in terms of the complex wavenumber,
the dielectric , and the system parameters

(19)

For low-loss materials, . It is seen that if the ratio
then .

In the example presented in Section III for the copper
parallel-plate capacitor filled by a 1.524-mm-thick GETEKR

dielectric at 1 GHz, m and . The
reported around 1 GHz is 0.01. Thus, according to (19),
the error in using (13) for calculating is about 14%.

From (19), the upper limit on the error due to the metal
resistivity can be estimated as , which shows
that when , the conductor loss insignificantly
contributes to the measured loss tangent.

Complex dielectric constants for materials typically used
in microwave integrated circuits are usually in the range of
2–20 for and 0.0001–0.1 for [22]. To ignore the
conductor loss in the estimated value, the following
three conditions must be assured:

1) planes are good conductors;
2) dielectric layer is relatively thick as is reported in [23];
3) measurement frequency is high, such that the conductor

loss is much smaller than the dielectric loss.

However, when the dielectric loss is very small, i.e.,
, the contribution of the conductor loss in the frequency

range of interest is no longer small compared to the dielectric
loss. Thus, the apparent values can be significantly
different from the of the dielectric, in which case (19)
will produce significant errors in .

V. CONCLUSION

Our analytical-formula-based approach provides physical
and mathematical insight into the relation between complex
permittivity and port impedance for dielectric materials be-
tween parallel plates. Closed-form full-wave-based analytical
expressions were developed for calculating complex permit-
tivity near high-order modal resonant frequencies at which the
impedance contributed by the resonant mode dominates the
impedance of other modes. These equations enable the calcu-
lation of complex permittivity from impedance measurements
and structural dimensions for low-loss dielectric materials in
electrically wide structures at high frequencies. Based on this
theory, computer simulation for complex permittivities at or
near several resonant frequencies and the comparison between
the measurement data and the model prediction at the first two
observable resonances of the PCB capacitor were presented
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and the preliminary results were analyzed. We found that
when the operating frequency of a parallel-plate structure is
far below the system resonant frequencies, the static approach
based on the use of the measured real and imaginary parts
of the input admittance of the structure provides a good
estimate of the complex permittivity. However, if the structure
is operated at high frequencies, then the high-order-mode
approach presented in this paper should be used to obtain the
correct value for complex permittivity. In addition, an easily
applied analytical expression for estimating the effect of loss
in the parallel plates on the calculated complex permittivity
was also developed, which links the physical quantity
with the engineering design parameters.

To further validate this method, we will make measurements
at or near the modal resonances of a parallel-plate structure
and perform a detailed comparison and error analysis on this
study. For the more general case of obtaining the complex
permittivity at arbitrary frequencies, it is necessary to employ
the total impedance formula for the structure rather than the
individual modal impedances around resonances. The general
case can be investigated by numerically solving the inverse
problem, which will be a subject for further research.
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